202 research outputs found

    Blending Learning and Inference in Structured Prediction

    Full text link
    In this paper we derive an efficient algorithm to learn the parameters of structured predictors in general graphical models. This algorithm blends the learning and inference tasks, which results in a significant speedup over traditional approaches, such as conditional random fields and structured support vector machines. For this purpose we utilize the structures of the predictors to describe a low dimensional structured prediction task which encourages local consistencies within the different structures while learning the parameters of the model. Convexity of the learning task provides the means to enforce the consistencies between the different parts. The inference-learning blending algorithm that we propose is guaranteed to converge to the optimum of the low dimensional primal and dual programs. Unlike many of the existing approaches, the inference-learning blending allows us to learn efficiently high-order graphical models, over regions of any size, and very large number of parameters. We demonstrate the effectiveness of our approach, while presenting state-of-the-art results in stereo estimation, semantic segmentation, shape reconstruction, and indoor scene understanding

    Emergent Predication Structure in Hidden State Vectors of Neural Readers

    Full text link
    A significant number of neural architectures for reading comprehension have recently been developed and evaluated on large cloze-style datasets. We present experiments supporting the emergence of "predication structure" in the hidden state vectors of these readers. More specifically, we provide evidence that the hidden state vectors represent atomic formulas Φ[c]\Phi[c] where Φ\Phi is a semantic property (predicate) and cc is a constant symbol entity identifier.Comment: Accepted for Repl4NLP: 2nd Workshop on Representation Learning for NL

    Who did What: A Large-Scale Person-Centered Cloze Dataset

    Full text link
    We have constructed a new "Who-did-What" dataset of over 200,000 fill-in-the-gap (cloze) multiple choice reading comprehension problems constructed from the LDC English Gigaword newswire corpus. The WDW dataset has a variety of novel features. First, in contrast with the CNN and Daily Mail datasets (Hermann et al., 2015) we avoid using article summaries for question formation. Instead, each problem is formed from two independent articles --- an article given as the passage to be read and a separate article on the same events used to form the question. Second, we avoid anonymization --- each choice is a person named entity. Third, the problems have been filtered to remove a fraction that are easily solved by simple baselines, while remaining 84% solvable by humans. We report performance benchmarks of standard systems and propose the WDW dataset as a challenge task for the community.Comment: To appear at EMNLP 2016. Our dataset is available at tticnlp.github.io/who_did_wha
    • …
    corecore